
STRLEN 1
ID: 852-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

STRLEN
Beware of use with strings that are not null terminated.

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-23

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 5796 bytes

Attack Category • Malicious Input

• Denial of Service

Vulnerability Category • Buffer Overflow

• Unconditional

Software Context • String Management

Location

Description The strlen() function can be associated with
problems if a string is not null terminated or if it is
used in a way that causes a null terminator to be lost.

The strlen() function finds the length of the given
string (represented as a character array). It iterates
through the characters in the string, stopping when it
finds the null terminator. The problem does not lie in
the strlen() function itself but in how it is generally
used. If an attacker is able to generate a string in an
application that is not null terminated, strlen() will
return an incorrect length. If this length is used to
perform tasks such as memory allocation and string
parsing, other security problems can occur.

The use of strlen() can easily cause off-by-one
errors, since copying a string of length strlen(buf)
actually requires copying strlen(buf)+1 characters
(including the null terminator). The resulting
unterminated strings can cause subsequent problems
when functions such as strlen() are run on them.

APIs Function Name Comments

_mbslen

_tcslen

lstrlen

strlen

wcslen

Method of Attack In some cases, an attacker can place a string in a
buffer that is exactly the length of the allocated

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

STRLEN 2
ID: 852-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

buffer. This leaves no space for the terminating null
character, effectively connecting the string with
whatever is next in memory. Note that this is not a
problem with the strlen() function itself but with the
function used to populate the buffer. However, as a
result, a call to strlen() might run off the end of the
string and cause an access violation, thus terminating
the application. There are also many ways in which
improper use of strlen() can cause buffer overflows
and other security problems.

Exception Criteria When the string input to the strlen() function is
defined by the programmer and is not modified
during program execution.

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

All uses of
strlen() should
be checked
to ensure safe
usage.

All buffers
containing
strings input by
the user should
be explicitly
terminated
with \0 before a
call to strlen().
If the buffer
is statically
allocated,
buffer[sizeof(buffer)-1]
should be set
to \0 before a
call to strlen().
This way, even
if the actual
string is not
null terminated,
strlen() will
not read past
the buffer. If
the buffer is
dynamically
allocated, then
string objects
that store the
length of the
string should
be used instead
of character
arrays. In this
case, calling
strlen() should
be unnecessary.

Note that
strlen() itself

Typically
effective,
but there are
many ways
of creating
unsafe string
management
code.

STRLEN 3
ID: 852-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

does not cause
major security
problems.
It simply
increases
the chances
of security
problems in
other string
handling
functions that
use the output
of strlen().

When tempted
to use strlen()

Use
strlen_s() or
StringCchLength()

Signature Details size_t strlen(const char *string)
size_t wcslen(const wchar_t *string)
size_t _mbslen(const unsigned char *string)
size_t _mbstrlen(const char *string)
int lstrlen(LPCTSTR lpString)

Examples of Incorrect Code char dest[50];
strncpy(dest, src, strlen(src));

Examples of Corrected Code char dest[50];
strncpy(dest, src, sizeof(dest));
dest[sizeof(dest)-1] = 0;

Source Reference • http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/vclib/html
/

_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.asp2

Recommended Resources

Discriminant Set Operating System • Windows

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

1. mailto:copyright@cigital.com

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.asp
mailto:copyright@cigital.com

STRLEN 4
ID: 852-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

